Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Clinics ; 72(3): 143-149, Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-840057

ABSTRACT

OBJECTIVE: The passive cycle ergometer aims to prevent hypotrophy and improve muscle strength, with a consequent reduction in hospitalization time in the intensive care unit and functional improvement. However, its effects on oxidative stress and immune system parameters remain unknown. The aim of this study is to analyze the effects of a passive cycle ergometer on the immune system and oxidative stress in critical patients. METHODS: This paper describes a randomized controlled trial in a sample of 19 patients of both genders who were on mechanical ventilation and hospitalized in the intensive care unit of the Hospital Agamenom Magalhães. The patients were divided into two groups: one group underwent cycle ergometer passive exercise for 30 cycles/min on the lower limbs for 20 minutes; the other group did not undergo any therapeutic intervention during the study and served as the control group. A total of 20 ml of blood was analysed, in which nitric oxide levels and some specific inflammatory cytokines (tumour necrosis factor alpha (TNF-α), interferon gamma (IFN-γ) and interleukins 6 (IL-6) and 10 (IL-10)) were evaluated before and after the study protocol. RESULTS: Regarding the demographic and clinical variables, the groups were homogeneous in the early phases of the study. The nitric oxide analysis revealed a reduction in nitric oxide variation in stimulated cells (p=0.0021) and those stimulated (p=0.0076) after passive cycle ergometer use compared to the control group. No differences in the evaluated inflammatory cytokines were observed between the two groups. CONCLUSION: We can conclude that the passive cycle ergometer promoted reduced levels of nitric oxide, showing beneficial effects on oxidative stress reduction. As assessed by inflammatory cytokines, the treatment was not associated with changes in the immune system. However, further research in a larger population is necessary for more conclusive results.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Critical Illness/therapy , Exercise/physiology , Motion Therapy, Continuous Passive/methods , Oxidative Stress/physiology , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Intensive Care Units , Lipopolysaccharides/therapeutic use , Muscle Strength/physiology , Muscular Atrophy/prevention & control , Nitric Oxide/immunology , Nitric Oxide/metabolism , Oxidative Stress/immunology , Reproducibility of Results , Respiration, Artificial/methods , Statistics, Nonparametric , Time Factors , Treatment Outcome
2.
Iranian Journal of Parasitology. 2012; 7 (2): 21-28
in English | IMEMR | ID: emr-124827

ABSTRACT

The purpose of this study was to evaluate antileishmanial effects of ASA via NO pathway in Leishmania major infected Balb/c mice. Moreover, toxicity and pathological consequences of ASA administration were investigated. Balb/c mice were infected with L. major and ASA was inoculated orally after lesion appearance for its ability to modulate NO and to modify Leishmania infection in host, in order to evaluate the effects of NO production on size and lesion macroscopy, delay of lesion formation and proliferation of amastigotes inside macrophages. Liver, spleen, and lymph nodes were also studied as target organs to detect amastigotes. In addition, plasma was investigated for NO induction using Griess microassay. ASA increased NO production in plasma of both na‹ve and Leishmania test groups at the ultimate of the experimental period. A decline was observed in proliferation of amastigotes inside macrophages of test group when compared with control one. ASA reduced lesion size, inhibited Leishmania visceralisation in spleen, lymph node, and decreased hepato/splenomegaly in ASA treated animals. Some antileishmanial effects of ASA by NO-modulation were indicated during systemic leishmaniasis in mice. Despite slight effects on lesion size, ASA decreased parasite visceralization in target organs and declined their proliferation inside macrophages. Therefore, ASA may be indicated to inhibit systemic leishmaniasis via NO pathway in mice model


Subject(s)
Animals, Laboratory , Aspirin , Leishmania , Nitric Oxide/immunology , Immunomodulation , Mice, Inbred BALB C
3.
Braz. j. infect. dis ; 14(6): 606-612, Nov.-Dec. 2010.
Article in English | LILACS | ID: lil-578437

ABSTRACT

Nitric oxide (NO) is a free radical synthesized from L-arginine by different isoforms NO-synthases. NO possesses multiple and complex biological functions. NO is an important mediator of homeostasis, and changes in its generation or actions can contribute or not to pathological states. The knowledge of effects of NO has been not only important to our understanding of immune response, but also to new tools for research and treatment of various diseases. Knowing the importance of NO as inflammatory mediator in diverse infectious diseases, we decided to develop a revision that shows the participation/effect of this mediator in immune response induced against Giardia spp. Several studies already demonstrated the participation of NO with microbicidal and microbiostatic activity in giardiasis. On the other hand, some works report that Giardia spp. inhibit NO production by consuming the intermediate metabolite arginine. In fact, studies in vitro showed that G. lamblia infection of human intestinal epithelial cells had reduced NO production. This occurs due to limited offer of the crucial substrate arginine (essential aminoacid for NO production), consequently reducing NO production. Therefore, the balance between giardial arginine consumption and epithelial NO production could contribute to the variability of the duration and severity of infections by this ubiquitous parasite.


Subject(s)
Animals , Humans , Giardia lamblia/immunology , Giardiasis/immunology , Intestinal Mucosa/immunology , Nitric Oxide/biosynthesis , Giardia lamblia/pathogenicity , Giardiasis/parasitology , Immunity, Mucosal/immunology , Intestinal Mucosa/parasitology , Nitric Oxide/immunology
4.
Braz. j. infect. dis ; 13(6): 440-448, Dec. 2009. ilus, tab
Article in English | LILACS | ID: lil-546014

ABSTRACT

Nitric oxide (NO) is a potent mediator with diverse roles in regulating cellular functions and signaling pathways. The NO synthase (NOS) enzyme family consists of three major isoforms, which convey variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxicity. This family of enzymes are generally classified as neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS). Increased levels of NO are induced from iNOS during infection; while eNOS and nNOS may be produced at the baseline in normal conditions. An association of some key cytokines appears to be essential for NOS gene regulation in the immunity of infections. Accumulating evidence indicates that parasitic diseases are commonly associated with elevated production of NO. NO plays a role in the immunoregulation and it is implicated in the host non-specific defence in a variety of infections. Nevertheless, the functional role of NO and NOS isoforms in the immune responses of host against the majority of parasites is still highly controversial. In the present review, the role of parasitic infections will be discussed in the controversy related to the NO production and iNOS gene expression in different parasites and a variety of experimental models.


Subject(s)
Humans , Helminthiasis/immunology , Nitric Oxide Synthase/immunology , Nitric Oxide/immunology , Protozoan Infections/immunology , Nitric Oxide Synthase Type I/immunology , Nitric Oxide Synthase Type II/immunology , Nitric Oxide Synthase Type III/immunology , Up-Regulation/immunology
5.
Rev. Inst. Med. Trop. Säo Paulo ; 51(5): 241-246, Sept.-Oct. 2009.
Article in English | LILACS | ID: lil-530128

ABSTRACT

Visceral leishmaniasis is caused by protozoan parasites of the Leishmania donovani complex. During active disease in humans, high levels of IFN-γ and TNF-α detected in blood serum, and high expression of IFN-γ mRNA in samples of the lymphoid organs suggest that the immune system is highly activated. However, studies using peripheral blood mononuclear cells have found immunosuppression specific to Leishmania antigens; this poor immune response probably results from Leishmania antigen-engaged lymphocytes being trapped in the lymphoid organs. To allow the parasites to multiply, deactivating cytokines IL-10 and TGF-β may be acting on macrophages as well as anti-Leishmania antibodies that opsonize amastigotes and induce IL-10 production in macrophages. These high activation and deactivation processes are likely to occur mainly in the spleen and liver and can be confirmed through the examination of organ samples. However, an analysis of sequential data from studies of visceral leishmaniasis in hamsters suggests that factors outside of the immune system are responsible for the early inactivation of inducible nitric oxide synthase, which occurs before the expression of deactivating cytokines. In active visceral leishmaniasis, the immune system actively participates in non-lymphoid organ lesioning. While current views only consider immunocomplex deposition, macrophages, T cells, cytokines, and immunoglobulins by diverse mechanism also play important roles in the pathogenesis.


A leishmaniose visceral é causada por protozoários do gênero do complexo Leishmania donovani. Durante a doença ativa no homem são detectados altos níveis de IFN-γ e de TNF-α no soro, e elevada expressão de mRNA de IFN-γ em amostras de órgãos linfóides sugerindo um estado intensamente ativado do sistema imunológico. A visão atual, no entanto, refere-se à imunossupressão específica aos antígenos de Leishmania com base em estudos utilizando células mononucleares do sangue periférico; a explicação para sua resposta deficiente seria provavelmente porque os linfócitos compometidos com antígeno de Leishmania são sequestrados nos órgãos linfóides. Para permitir a proliferação do parasito, citocinas desativadoras IL-10 e TGF-β atuariam nos macrófagos, bem como os anticorpos anti-Leishmania opsonizando amastigotas e induzindo a produção IL-10 pelos macrófagos. Estes processos de intensa ativação e desativação provavelmente ocorreriam no baço e fígado, principalmente, e confirmados com amostras de órgãos. No entanto, analisando dados seqüenciais obtidos na leishmaniose visceral no hamster, sugere-se provável presença de fatores fora do sistema imunológico como responsável pela inativação inicial de sintase induzível do óxido nítrico que ocorre antes da expressão de citocinas desativadoras. Na leishmaniose visceral ativa o sistema imunológico participa ativamente na lesão de órgãos não linfóides. Contrária à visão existente que considera somente mecanismos de deposição de imunocomplexos, observa-se na patogenia a participação de macrófagos, células T, citocinas e imunoglobulinas por mecanismo alternativo.


Subject(s)
Animals , Cricetinae , Dogs , Humans , Cytokines/biosynthesis , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , T-Lymphocytes/immunology , Immunity, Cellular , Immunoglobulin Isotypes/immunology , Macrophage Activation/immunology , Nitric Oxide/biosynthesis , Nitric Oxide/immunology
6.
Mem. Inst. Oswaldo Cruz ; 104(supl.1): 236-245, July 2009. ilus
Article in English | LILACS | ID: lil-520884

ABSTRACT

Trypanosoma cruzi infection triggers substantial production of nitric oxide (NO), which has been shown to have protective and toxic effects on the host's immune system. Sensing of trypomastigotes by phagocytes activates the inducible NO-synthase (NOS2) pathway, which produces NO and is largely responsible for macrophage-mediated killing of T. cruzi. NO is also responsible for modulating virtually all steps of innate and adaptive immunity. However, NO can also cause oxidative stress, which is especially damaging to the host due to increased tissue damage. The cytokines IFN-³ and TNF-±, as well as chemokines, are strong inducers of NOS2 and are produced in large amounts during T. cruzi acute infection. Conversely, TGF-² and IL-10 negatively regulate NO production. Here we discuss the recent evidence describing the mechanisms by which NO is able to exert its antimicrobial and immune regulatory effects, the mechanisms involved in the oxidative stress response during infection and the implications of NO for the development of therapeutic strategies against T. cruzi.


Subject(s)
Humans , Chagas Disease/immunology , Immune System/metabolism , Nitric Oxide Synthase Type II/immunology , Nitric Oxide/immunology , Trypanosoma cruzi/immunology , Chagas Disease/metabolism , Immune System/parasitology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/biosynthesis , Oxidative Stress
7.
SJPH-Sudanese Journal of Public Health. 2009; 4 (3): 321-324
in English | IMEMR | ID: emr-93728

ABSTRACT

In a comparative study involving the use of Ivermectin, Chloroquine and Artemether against Onchocerca gutturosa in calves, the plasma nitrate /nitrite concentration was measured. Following treatment and clearance of skin mf of O. gutturosa, the plasma nitrate/ nitrite concentrations, nor the stable end product of Nitric Oxide [NO] breakdown, rise significantly although it showed short peaks following reduction in dermal mf counts but no clear correlation was detected


Subject(s)
Male , Animals , Ivermectin/adverse effects , Chloroquine/adverse effects , Artemisinins/adverse effects , Nitrates/blood , Nitric Oxide/immunology , Nitrites/blood
8.
The Korean Journal of Parasitology ; : 205-212, 2009.
Article in English | WPRIM | ID: wpr-135414

ABSTRACT

Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis lysates increased proinflammatory cytokines, such as TNF-alpha, IL-1beta, and IL-6 by HMDM. The involvement of nuclear factor (NF)-kappaB signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-kappaB. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-kappaB activation and TNF-alpha production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-kappaB inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-alpha. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-alpha, and NO. In particular, we showed that T. vaginalis induced TNF-alpha production in macrophages through NO-dependent activation of NF-kappaB, which might be closely involved in inflammation caused by T. vaginalis.


Subject(s)
Animals , Humans , Cells, Cultured , Cytokines/immunology , Macrophages/immunology , Nitric Oxide/immunology , Trichomonas Infections/immunology , Trichomonas vaginalis/immunology
9.
The Korean Journal of Parasitology ; : 205-212, 2009.
Article in English | WPRIM | ID: wpr-135411

ABSTRACT

Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis lysates increased proinflammatory cytokines, such as TNF-alpha, IL-1beta, and IL-6 by HMDM. The involvement of nuclear factor (NF)-kappaB signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-kappaB. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-kappaB activation and TNF-alpha production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-kappaB inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-alpha. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-alpha, and NO. In particular, we showed that T. vaginalis induced TNF-alpha production in macrophages through NO-dependent activation of NF-kappaB, which might be closely involved in inflammation caused by T. vaginalis.


Subject(s)
Animals , Humans , Cells, Cultured , Cytokines/immunology , Macrophages/immunology , Nitric Oxide/immunology , Trichomonas Infections/immunology , Trichomonas vaginalis/immunology
10.
Medicina (B.Aires) ; 67(6): 737-746, nov.-dic. 2007. graf
Article in Spanish | LILACS | ID: lil-633500

ABSTRACT

Aunque existen varios mecanismos inmunológicos para eliminar a los patógenos intracelulares, éstos han elaborado una variedad de estrategias para escapar de la respuesta del sistema inmune y asegurarse su supervivencia y replicación en el huésped. Algunos parásitos modulan la producción de numerosas moléculas tóxicas sintetizadas por el sistema inmune. Varios parásitos son altamente sensibles al óxido nítrico (ON) y sus derivados. El ON es producido en macrófagos (MΦ) luego de la estimulación con productos microbianos o con citoquinas. En el pasado, los MΦ se identificaban como células puramente inflamatorias (MΦ activados en forma clásica), capaces de secretar mediadores inflamatorios, actuar como células presentadoras de antígenos y matar patógenos intracelulares. Sin embargo, los MΦ activados representan un grupo más heterogéneo de células con distintos marcadores biológicos que pueden llevar a cabo diferentes funciones inmunológicas. Los MΦ activados alternativamente, fallan en producir ON en virtud de la inducción de la enzima arginasa y consecuentemente tienen disminuida su capacidad para matar patógenos intracelulares. Se ha comunicado la inducción de arginasa por parte de varios parásitos, por lo tanto este mecanismo podría favorecer su supervivencia en el huésped. En un modelo de infección con Trypanosoma cruzi, en nuestro grupo estudiamos la participación de arginasa y de las señales intracelulares involucradas en su inducción, durante la replicación de este parásito en los MΦ. La información obtenida a partir de nuestros trabajos permitiría comprender algunos mecanismos por los cuales distintas células del sistema inmune pueden ser programadas para favorecer el establecimiento de infecciones parasitarias crónicas.


Although there are several immunological mechanisms to eliminate the intracellular pathogens, they have elaborated a variety of strategies to escape of the immune response and to make possible their survival and replication in the host. Some parasites modulate the production of several toxic molecules synthesized by the immune system. Several parasites are highly sensitive to nitric oxide (ON) and their derivatives. ON is produced in macrophages (MΦ) after stimulation with microbial products or cytokines. In the past, M Φ were defined as inflammatory cells (classically activated MΦ), able to produce inflammatory mediators, to act like antigens presenting cells and to kill intracellular pathogens. Nevertheless, activated MΦ involve a more heterogeneous group of cells with different biological markers that can carry out different immunological functions. Alternatively activated MΦ fail to produce ON due to the arginase induction and consequently they have diminished their capacity to kill intracellular pathogens. It has been reported the induction of arginase by different parasites; therefore this mechanism could favor their survival in the host. In our group, we studied the participation of arginase in a model of Trypanosoma cruzi infection and the intracellular signals involved in the replication of this parasite in MΦ. The data obtained from our works would allow the understanding of some mechanisms by which cells can be programmed to favor the establishment of chronic parasitic infections.


Subject(s)
Animals , Mice , Arginase/metabolism , Chagas Disease/immunology , Macrophage Activation/immunology , Macrophages/immunology , Trypanosoma cruzi/growth & development , Antigens, Protozoan/immunology , Arginase/immunology , Disease Models, Animal , Enzyme Induction/immunology , Interferons/immunology , Leishmania/growth & development , Mitogen-Activated Protein Kinases/immunology , Nitric Oxide/biosynthesis , Nitric Oxide/immunology , Tumor Necrosis Factor-alpha/immunology
11.
Indian J Biochem Biophys ; 2007 Oct; 44(5): 310-9
Article in English | IMSEAR | ID: sea-28324

ABSTRACT

Nitric oxide (NO), initially described as a physiological mediator of endothelial cell relaxation plays an important role in hypotension. It is an intercellular messenger and has been recognized as one of the most versatile players in the immune system. Cells of the innate immune system--macrophages, neutrophils and natural killer (NK) cells use pattern recognition receptors to recognize molecular patterns associated with pathogens. Activated macrophages then inhibit pathogen replication by releasing a variety of effector molecules, including NO. In addition to macrophages, a large number of other immune system cells produce and respond to NO. Thus, NO is important as a toxic defense molecule against infectious organisms. It also regulates the functional activity, growth and death of many immune and inflammatory cell types including macrophages, T lymphocytes, antigen-presenting cells, mast cells, neutrophils and NK cells. However, the role of NO in non-specific and specific immunity in vivo and in immunologically mediated diseases and inflammation is poorly understood. This review discusses the role of NO in immune response and inflammation and its mechanisms of action in these processes.


Subject(s)
Animals , Cytokines/immunology , Endothelium, Vascular/immunology , Humans , Immunity, Innate/immunology , Inflammation/immunology , Models, Immunological , Nitric Oxide/immunology , Nitric Oxide Synthase Type II/immunology
12.
Braz. j. infect. dis ; 10(4): 283-292, Aug. 2006.
Article in English | LILACS | ID: lil-440684

ABSTRACT

Nitric oxide (NO) is thought to be an important mediator and critical signaling molecule for malaria immunopathology; it is also a target for therapy and for vaccine. Inducible nitric oxide synthase (iNOS) is synthesized by a number of cell types under inflammatory conditions. The most relevant known triggers for its expression are endotoxins and cytokines. To date, there have been conflicting reports concerning the clinical significance of NO in malaria. Some researchers have proposed that NO contributes to the development of severe and complicated malaria, while others have argued that NO has a protective role. Infection with parasites resistant to the microbicidal action of NO may result in high levels of NO being generated, which could then damage the host, instead of controlling parasitemia. Consequently, the host-parasite interaction is a determining factor for whether the parasite is capable of stimulating NO production; the role of NO in resistance to malaria appears to be strain specific. It is known that NO and/or its related molecules are involved in malaria, but their involvement is not independent of other immune events. NO is an important, but possibly not an essential contributor to the control of acute-phase malaria infection. The protective immune responses against malaria parasite are multifactorial; however, they necessarily involve final effector molecules, including NO, iNOS and RNI.


Subject(s)
Animals , Humans , Malaria/immunology , Nitric Oxide/immunology , Host-Parasite Interactions , Malaria/enzymology , Nitric Oxide Synthase Type II/metabolism , Plasmodium/immunology , Plasmodium/physiology
13.
Clinics ; 61(1): 71-76, Feb. 2006. ilus
Article in English | LILACS | ID: lil-422651

ABSTRACT

Sepse – um estado de infecção bacteriana sistêmica – frequentemente leva à falência múltipla de órgãos e associa-se a altos índices de mortalidade, apesar de progressos recentes no manejo de pacientes em unidades de terapia intensiva. Muitos dos efeitos maléficos associados à sepse são atribuídos a uma resposta inflamatória patologicamente ampliada que leva a recrutamento neutrofílico e ativação das moléculas de adesão do grupo das selectinas, durante as fases iniciais do processo . O óxido nítrico e sua diversas isoformas também foram implicados nas diversas manifestações vasculares da sepse como participantes diretos da toxicidade celular. Esta revisão descreve o papel das selectinas e do óxido nítrico em situações clínicas e experimentais de sepse, bem como os respectivos efeitos de processos terapêuticos de bloqueio.


Subject(s)
Animals , Humans , Neutrophil Activation/immunology , Nitric Oxide Synthase/physiology , Nitric Oxide/physiology , Selectins/physiology , Sepsis/immunology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/immunology , Selectins/immunology
15.
Alergia (Méx.) ; 46(6): 166-70, nov.-dic. 1999.
Article in Spanish | LILACS | ID: lil-276583

ABSTRACT

El óxido nítrico es un gas reactivo que se produce de manera endógena por enzimas óxido nítrico sintetasa. Existe una gran producción de óxido nítrico inducida por la isoforma de la enzima óxido nítrico sintetasa, que da como resultado la formación de productos citotóxicos, que son importantes mediadores de los mecanismo de defensa y de la respuesta inflamatoria normal. El óxido nítrico puede detectarse en el aire exhalado en humanos, sus concentraciones están incrementadas en pacientes con asma, y después de la exposición a alergenos. La medición del óxido nítrico exhalado se efectúa por métodos sencillos, no invasivos, para valorar el grado de inflamación de la vía aérea y la respuesta al tratamiento con esteroides en pacientes pediátricos


Subject(s)
Asthma/immunology , Asthma/physiopathology , Inflammation Mediators/immunology , Nitric Oxide/physiology , Nitric Oxide/immunology , Nitric Oxide/chemical synthesis , Hypersensitivity/immunology , Hypersensitivity/physiopathology , Inflammation/immunology
16.
Acta méd. colomb ; 24(3): 84-90, mayo-jun. 1999. ilus, tab
Article in Spanish | LILACS | ID: lil-292976

ABSTRACT

Objetivo: evaluar el papel del óxido nítrico (NO) en el síndrome de sjögren primario (SSp) y su relación con la apoptosis tisular en glándulas salivares menores (GSM). Métodos. Las GSM correspondieron a sialoadenitis focal propia del SSp, sialoadenitis crónica (SAC) y a GSM histológicamente normales. El progreso del SSp fue evaluado mediante el puntaje por focos inflamatorios en GSM. Los niveles salivares y séricos de nitrito (NO2) fueron medidos mediante la reacción de Griess. La expresión de la óxido nitrico sintetasa tipo 2 (NOS2) y de la cistatina C (Cis-C), un inhibidor fisiológico de proteasas, fue examinada en GSM por inmunohistoquímica, y analizada de manera semicuantitativa. La apoptosis tisular fue evaluada determinando la fragmentación del ADN mediante la incorporación de nucleótidos marcados. Resultados. Los niveles de NO2 en saliva fueron mayores en pacientes con SSp (n=17) que en controles sanos (n=17) (71.1ñ20.6 vs 3.7 uM, p=0.02), mientras que en suero fueron similares (22.3ñ3.8 vs 17ñ1.4 uM). En el infiltrado inflamatorio la expresión de NOs2 fue mayor en pacientes con SSp que con SAC (n=4) (94 por ciento vs 7 por ciento). La NOS2 fue observada también en células epiteliales canaliculares, células acinares y fibroblastos de pacientes (SSp y SAC), y de controles normales (n=5). En GSM de pacientes con SSp la expresión de NOS2 fue mayor en aquellas con focos inflamatorios <4(78 por ciento vs 17 por ciento, p=0.04) y con menor número de células apoptóticas en el inflitrado inflamatorio (0.6ñ0.2 vs 1.66ñ0.3, p=0.02). La expresión de Cls-C fue observada en los tres grupos estudiados, principalamente en células epiteliales canaliculares, en algunos plasmocitos y células acinares de pacientes con SSp. No se observó asociación entre la expresión de Cls-C y la apoptosis tisular. Conclusión. Este estudio confirma el aumento de la síntesis de NO en el SS primario, producido localmente en el sitio inflamatorio, principalamente durante las fases tempranas de la enfermedad, y sugiere su participación en el bloqueo de la apoptosis linfocitaria, la cual no es regulada por la Cis-C. el mecanismo de esta inhibición apoptótica podría estar asociada a la S-nitrosilación de caspasas


Subject(s)
Humans , Apoptosis/physiology , Lymphocytes/immunology , Nitric Oxide/immunology , Nitric Oxide/toxicity , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/physiopathology , Sjogren's Syndrome/immunology
18.
Mem. Inst. Oswaldo Cruz ; 93(supl.1): 175-80, Oct. 1998. graf
Article in English | LILACS | ID: lil-218663

ABSTRACT

Nitric oxide (NO) is an important effector molecule involved in immune regulation and defense. NO produced by cytokine-activated macrophages was reported to be cytotoxic against the helminth Schistosoma mansoni. Identification and characterization of S. mansoni antigens that can provide protective immunity is crucial for understanding the complex immunoregulatory events that modulate the immune response in schistosomiasis. It is, then, essential to have available defined, purified parasite antigens. Previous work by our laboratory identified a fraction of S. mansoni soluble adult worm antigenic preparation (SWAP), named PIII, able to elicit significant in vitro cell proliferation and at the same time lower in vitro and in vivo granuloma formation when compared either to SEA (soluble egg antigen) or to SWAP. In the present work we report the effect to different in vivo trials with mice on their spleen cells ability to produce NO. We demostrate that PIII-immunization is able to significantly increase NO production by spleen cells in vitro stimulation with LPS. These data suggest a possible role for NO on the protective immunity induced by PIII.


Subject(s)
Animals , Mice , Antigens, Helminth/immunology , Spleen/cytology , Granuloma/immunology , In Vitro Techniques , Nitric Oxide/immunology , Schistosoma mansoni/immunology , Mice/parasitology
19.
Alergia (Méx.) ; 40(4): 98-105, jul.-ago. 1993.
Article in Spanish | LILACS | ID: lil-134921

ABSTRACT

Revisión de la inmunoterapia de la leishmaniasis, los modelos en los animales de laboratorio, y los progresos recientes en la vacunación experimental. En los últimos años se han producido progresos importantes que han contribuido sustancialmente a clasificar el papel de las interleucinas y otros mediadores químicos en la respuesta inmunitaria. Todos estos hallazgos abren la puerta para la producción de vacunas mejores y más inmunogénicas que en un futuro cercano habrán de utilizarse ventajosam,ente en los humanos


Subject(s)
Humans , Animals , Child, Preschool , Mice , Immunity, Cellular/immunology , Leishmaniasis/immunology , Nitric Oxide/immunology , Psychodidae/immunology , Animals, Laboratory/immunology , Immunity, Cellular/physiology , Leishmaniasis/physiopathology , Nitric Oxide/chemistry , Psychodidae/pathogenicity , Vaccines, Synthetic/biosynthesis , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL